当前位置: 首页 » 资讯 » 新科技 » 正文

苹果创新“清单法”:用 AI 大模型当老师,教小模型执行复杂指令

IP属地 中国·北京 编辑:苏婉清 IT之家 时间:2025-08-26 08:08:45

IT之家 8 月 26 日消息,科技媒体 9to5Mac 昨日(8 月 25 日)发布博文,报道称苹果研究人员在最新论文中提出“基于清单反馈的强化学习”(RLCF)方法,用任务清单替代传统人类点赞 / 点踩评分,显著提升大语言模型(LLMs)执行复杂指令能力。

IT之家注:RLCF 的全称为 Reinforcement Learning from Checklist Feedback,不同于传统的“人类反馈强化学习”(RLHF)依赖人工点赞 / 点踩,RLCF 为每条用户指令生成具体的检查清单,并按 0-100 分逐项评分,用以指导模型优化。


研究团队在强指令跟随模型 Qwen2.5-7B-Instruct 上测试该方法,涵盖五个常用评测基准。结果显示,RLCF 是唯一在全部测试中均取得提升的方案:

FollowBench 硬性满意率提升 4 个百分点InFoBench 提高 6 点Arena-Hard 胜率增加 3 点某些任务最高提升达 8.2%。

这表明清单反馈在复杂、多步骤需求的执行中效果显著。



清单的生成过程也颇具特色。团队利用更大规模的 Qwen2.5-72B-Instruct 模型,结合既有研究方法,为 13 万条指令生成了“WildChecklists”数据集。清单内容为明确的二元判断项,例如“是否翻译成西班牙语?”。随后,大模型对候选回答逐项打分,综合加权后作为小模型的训练奖励信号。

苹果研究者也坦言该方法存在局限。首先,它依赖更强模型作为评判者,这在资源受限场景下未必可行。其次,RLCF 专注于提升复杂指令执行能力,并非设计用于安全对齐,因此不能替代安全性评估与调优。对于其他任务类型,该方法的适用性仍需进一步验证。


免责声明:本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其内容真实性、完整性不作任何保证或承诺。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕。